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Abstract

Turbulent convection is inherently non-local and a primary condition for a successful
treatment of the PBL is a reliable model of non-locality. In the dynamic equations

governing the convective flux, turbulent kinetic energy, etc, non-locality enters through
the third-order moments, TOMs. Since the simplest form, the so-called down gradient

approximation (DGA), severely underestimates the TOMs (by up to an order of
magnitude), a more pnysical model is needed. In 1994, an analytical model was presented
which was derived directly from the dynamical equations for the TOMs. It considerably
improved the DGA but was a bit cumbersome to use.

Here, we present a new analytic expression for the TOMs which is considerably
simpler than the 1994 expression and which at the same time yields a much better fit to the
LES data.

I. Introduction.

The search for a reliable expression for the third-order moments to be used in the

dynamic equations for the second-order moments such as the turbulent kinetic energy,
convective fluxes, etc, has a long history. For many years, people used the so-called down
gradient approximation but the advent of LES (large eddy simulation) showed that said
model severely underestimates the true value of the TOMs (Moeng and Wyngaard, 1989)

Prompted by those results, Canuto et a1.(1994) undertook the task of solving directly
the dynamic equations for the TOMs themselves thus avoiding the use of phenomenological
expressions. The first merit of the new expressions was to show that all the TOMs are a
linear combination of the gradients of all the second-order moments and not only of
selected ones, as assumed in the down-gradient approximation. From the performance
viewpoint, the TOMs were tested against the results from three LES and the general

agreement was satisfactory. Ziiitinkevich et al. (1999) have however pointed out that the

performance of w--2-0 and _ was not as good as that of the other TOMs and thus
improvements were needed. In addition, the new TOMs though analytic, were a bit
cumbersome to use. For these reasons, we have been motivated to find new expressions for
the TOMs which are at the same time simpler and which yield better results than the 1994

expressions.

II. The New Third-Order Moments



Even though the down-gradient approximation gives rise to a non-local convective
flux, it is known that it poorly representsthe full TOM's and thus a better model is
needed.The generaldynamic equationsfor the six TOMs

w-3,_, w-_-_,w---_,-03,_-_ (1)

whereq2=u2+v2+w2, u,v,w and 0 are the fluctuating velocity and temperature fields, are
given by Eqs.(37a-g) of CD98. A first solution, obtained with symbolic algebra, was
presented in Canuto et al. (1994)..

In this paper, we present a new solution of the stationary limit of the dynamic
equation for the TOMs given by Eq.(17-22) of Canuto et a1.(1994). Since the different
TOMs in (8a) have different dimensions, we shall multiply the first four by appropriate
factors so that all TOMs have the dimensions of a velocity cubed. The solutions can be
expressed as follows:
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where K and e are the kinetic energy and its rate of dissipation and where A =0.04 for _>0
o

and A =0 if _3<0, with /3=-OT/0z. The constants have the values c=7, d=26/15, e=4/5.
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Furthermore:
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Finally,
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depend on the second-order moments and are given by:
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have dimensions of velocity cubed.
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III. Test of the new TOM vs LES data.

In Fig.1 we present the comparison of the new TOMs vs. LES data. We also show the
down-gradient approximation to highlight its difference with the full treatment. The
results in Fig.1 were obtained using the LES data to compute the second-order moments
Eq.(12a-f), K and T=2K/( and _(z). The new TOMs were then obtained using Eqs.(2)-(7).
The agreement between the model results and the LES data is quite satisfactory.

IV. New Physical ingredient

The superior agreement obtained with respect to the 19994 model is of course only
partly due to the simpler analytical form of the TOM which has allowed us to easily find
the best set of parameters (especially c) to fit the data. Due to its rather rigid nature, the
1994 model did not allow the same freedom. However, the main reason is one of physical
origin: we have abandoned the quasi-normal approximation used to treat the fourth-order
moments in favor of

= f(ad c--c[+ ac b---d+ a--d b-c) (12g)
where f is no longer a constant as in 1994. This has two advantages: since the fourth-order

moments enter the problem under a divergence, even when the second-order moments are
constant, the non-zero derivative of the function f makes the TOM different than zero, a
behavior that was not possible within the standard approximation. Second, by choosing the
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function f to be a function of the Brunt-Vaisala frequency, which is the most obvious

suggestion and in its simplest form, one indeed obtains a considerable improvement in the
behavior of the TOM. The new treatment of the fourth-order moments is represented here

by the function r v given in (Be) taking )_ =0 reduces the problem to the f=l case.
0

V. Conclusions.

The results presented in Fig.1 satisfy the two requirements set out at the beginning:
the expressions for the TOMs are considerably simpler than those of 1994 and their

performance is better. In fact, the large values of w--2-0and _ that characterized the 1994

solutions are no longer present and a much better fit is obtained.
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Figure Caption

Fig.1. The third-order moments Eq.(1) vs. z/z i. The LES results of Zilitinkevich et al.

d1999) are plotted as dotted lines (the LES data did not contain the _ value); the
own-gradient approximation (DGA) model is plotted as dashed lines while the present

model, Eqs.(2-7), yields the results plotted as solid lines. As well known, the DGA severely
underestimates the third-order moments. All TOMs are normalized with Deardorff

convective scales w,(=2ms -1) and 0,(=0.12k). The value of z i is 1010m.
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